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Exact Solutions of the Two-Dimensional
Schrödinger Equation with Certain Central
Potentials
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By applying an ansatz to the eigenfunction, an exact closed-form solution of the
Schrödinger equation in two dimension is obtained with the potentials V(r) 5
ar 2 1 br 4 1 cr 6, V(r) 5 ar 1 br 2 1 cr21, and V(r) 5 ar 2 1 br22 1 cr24 1
dr26, respectively. The restrictions on the parameters of the given potential and
the angular momentum m are obtained.

1. INTRODUCTION

One of the important tasks of quantum mechanics is to solve the Schröd-
inger equation with physical potentials. It is well known that the exact solution
of the Schrödinger equation is possible only for certain potentials such as
Coulomb or harmonic oscillator potentials. Approximation methods are fre-
quently used to obtain the solution. In the past several decades, much effort
have been made to study the stationary Schrödinger equation with central
potentials containing negative powers of the radial coordinate [1–31]. Gener-
ally, most of these authors treated these problems in three-dimensional space.
Recently, the study of higher order central potentials has been of interest to
physicists and mathematicians who want to understand newly discovered
physical phenomena such as structural phase transitions [1], polaron formation
in solids [2], and the concept of false vacuo in field theory [3]. In addition
the solution of the Schrödinger equation with the sextic potential V(r) 5
ar 2 1 br 4 1 cr 6 can be applied in the field of fiber optics [4], where one
wants to solve a similar problem of an inhomogeneous spherical or circular
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waveguide with refractive index profile a function of a sextic-type potential.
Its solution is also applicable to molecular physics [5]. The study of the
mixed potential V(r) 5 a1r 1 b1r 2 1 c1r21 (harmonic 1 linear 1 Coulomb)
as a phenomenological potential appears in nuclear physics. The study of the
singular even-power potential V(r) 5 ar 2 1 br22 1 cr24 1 dr26 has been
widely used in different fields such as atomic physics and optical physics
[29–31]. Interest in these anharmonic oscillator-like interactions stems from
the fact that the study of the relevant Schrödinger equation, for example, in
atomic and molecular physics as well as nuclear physics, provides us with
insight into the physical problem in question.

With the wide interest in the lower dimensional field theory in the recent
literature, however, it is necessary to study the two-dimensional Schrödinger
equation with certain central potentials such as the sextic and mixed potentials
as well as the singular even-power potential, an investigation which, to our
knowledge, has not appeared in the literature. Furthermore, two-dimensional
models are often applied to make the more involved higher dimensional
systems tractable. Therefore, it seems reasonable to study the two-dimensional
Schrödinger equation with these potentials, which is the purpose of this paper.
On the other hand, we have succeeded in studying the two-dimensional
Schrödinger equation with some anharmonic potentials [16, 17].

This paper is organized as follows. Section 2 studies the solution of the
two-dimensional Schrödinger equation with the sextic potential V(r) 5 ar 2 1
br 4 1 cr 6 using an ansatz for the eigenfunction. The study of the mixed
potential V(r) 5 a1r 1 b1r 2 1 c1r21 is presented in Section 3. In Section 4,
we will study the singular even-power potential V(r) 5 ar 2 1 br22 1 cr24 1
dr26. A brief conclusion is given in Section 5.

2. THE SEXTIC POTENTIAL

Throughout this paper the natural units " 5 1 and m 5 1/2 are employed.
Consider the two-dimensional Schrödinger equation with a potential V(r) that
depends only on the distance r from the origin,

Hc 5 211
r



r
r



r
1

1
r 2

2

w22c 1 V(r)c 5 Ec (1)

where the potential is taken as

V(r) 5 ar 2 1 br 4 1 cr 6 (2)

The choice of r, w coordinates reflects a model where the full Hilbert space
is the tensor product of the space of square-integrable functions on the positive
half-line with the space of square-integrable functions on the circle. We
therefore write
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c(r, w) 5 r 21/2 Rm(r)e6imw, m 5 0, 1, 2, . . . (3)

and this factorization leads to a second-order equation for the radial function
Rm(r) with vanishing coefficient of the first derivative, i.e.,

d 2Rm(r)
dr 2 1 FE 2 V(r) 2

m2 2 1/4
r 2 GRm(r) 5 0 (4)

where m and E denote the angular momentum and energy, respectively. For
the solution of Eq. (4), we make an ansatz [6–12] for the radial wave function

Rm(r) 5 exp[pm(r)] o
n50

anr 2n1d (5)

where

pm(r) 5
1
2

ar 2 1
1
4

br 4 (6)

Substituting Eq. (5) into Eq. (4) and equating the coefficient of r2n1d12 to
zero, we obtain

Anan 1 Bn11an11 1 Cn12an12 5 0 (7)

where

An 5 a2 1 (3 1 2d 1 4n)b 2 a (8a)

Bn 5 E 1 (1 1 2d 1 4n)a (8b)

Cn 5 (d 1 2n)(21 1 d 1 2n) 2 (m2 2 1/4) (8c)

and

b2 5 c (9a)

2ab 5 b (9b)

It is easy to obtain the values of parameters for pm(r) from the Eq. (9) written as

b 5 6!c, a 5
b

2b
(10)

If the first nonvanishing coefficient a0 Þ 0 in Eq. (7), we can obtain C0 5
0 from Eq. (8c), i.e., d 5 2m 1 1/2 or m 1 1/2. In order to retain the well-
behaved solution at the origin and at infinity, we choose d and b as follows:

d 5 m 1 1/2, b 5 2!c (11a)

from which one can obtain
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a 5 2
b

2!c
(11b)

On the other hand, if the pth nonvanishing coefficient ap Þ 0, but ap11 5
ap12 5 ap13 5 ??? 5 0, it is easy to obtain Ap 5 0 from Eq. (8a), i.e.,

a 1 2!c(2 1 m 1 2p) 2
b2

4c
5 0 (12)

which is a restriction on the parameters a, b, c of the potential and angular
momentum m and p ( p # n). As we know, An , Bn , and Cn must satisfy the
determinant relation for a nontrivial solution

det)
B0 C1 ??? ??? ??? 0
A0 B1 C2 ??? ??? 0
???

???
???

???
???

???
0 0 0 0 Ap21 Bp

) 5 0 (13)

In order to present this method, we will give the exact solutions for the
different p 5 1, 2 as follows.

1. When p 5 0, it is easy to obtain B0 5 0 from Eq. (13), which, together
with Eq. (11), leads to

E0 5
3b

2!c
(14)

In this case, however, the restriction on the parameters of the potential and
the angular momentum m is obtained as

a 1 2!c(2 1 m) 2
b2

4c
5 0 (15)

The corresponding eigenfunction for p 5 0 can now be written as

R(0)
m 5 a0r d expF2

b

4!c
r 2 2

!c
4

r 4G (16)

where a0 is the normalization constant and d is given by Eq. (11).
2. When p 5 1, one can arrive at the following relation from Eq. (13):

B0 B1 2 A0C1 5 0 (17)

Similarly, we can obtain the energy eigenvalue from Eqs. (7)–(10) as

E1 5
b(2 1 m)

!c
6

!b2(2 1 m) 2 4c(1 1 m)(2 1 2!c(2 1 m))

!c
(18)

The corresponding restriction on the parameters and m is
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a 1 2(4 1 m)!c 2
b2

4c
5 0 (19)

The corresponding eigenfunction for p 5 1 is

R(1)
m 5 (a0 1 a1r 2)r d exp12

b

4!c
r 2 2

!c
4

r 42 (20)

where d has been given by Eq. (11), and the coefficients a0 and a1 can be
determined completely by the normalization condition

In this way, we can generate a class of exact solutions by setting p 5
1, 2, . . . . For the general case, if the pth nonvanishing coefficient ap Þ 0,
but ap11 5 ap12 5 ??? 5 0, we can obtain Ap 5 0, i.e.,

a2 1 (3 1 2d 1 4p) 5 a (21)

The corresponding eigenfunction is

R(p)
m 5 (a0 1 a1r 2 1 ??? 1 apr 2p)r d expF2

b

4!c
r 2 2

!c
4

r 4G (22)

where d has been given by Eq. (11a), and ai (i 5 1, 2, . . . , p) can be
expressed by the recurrence relation (7) and in principle obtained by the
normalization condition.

3. THE MIXED POTENTIAL

The approach for this potential is similar to that for the sextic potential
except for taking the ansatz as

Rm(r) 5 exp[pm(r)] o
n50

anr n1d (23)

where pm is taken as

pm(r) 5 ar 1
1
2

br 2 (24)

We can solve the two-dimensional Schrödinger equation with the potential

V(r) 5 ar 1 br 2 1
c
r

(25)

Similarly, we obtain the following sets of equations after substituting Eq.
(23) into Eq. (4) and equating the coefficients of r d1n to zero:

Anan 1 Bn11an11 1 Cn12an12 5 0 (26)
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where

An 5 E 1 b(1 1 2n 1 2d) (27a)

Bn 5 2c 1 a(2n 1 2d) (27b)

Cn 5 (n 1 d)(21 1 n 1 d) 2 (m2 2 1/4) (27c)

and

b2 5 b, 2ab 5 a (27d)

Similar to the above choices, we can choose b and d as 2!b and m 1
1/2, respectively. According to these choices, the parameter a can be
obtained as

a 5 2
a

2!b
(28)

Now, let us consider the case ap Þ 0, but ap11 5 ap11 5 ??? 5 0; then
we can get Ap 5 0. In this case, the energy eigenvalue can be written as

Ep 5 2!b(1 1 m 1 p) (29)

Likewise, the nontrivial solution of the recursion relation (26) can be obtained
by Eq. (13). The exact solutions for p 5 0 and p 5 1 are discussed below.

1. When p 5 0, we arrive at

E0 5 2!b(1 1 m) (30)

and B0 5 0, i.e.,

2c!b 5 a(1 1 2m) (31)

which is a restriction on the corresponding parameters of the potential and
the angular momentum m. The eigenfunction can be given as

R(0)
m 5 a0r d expF2

ar 1 br 2

2!b
G (32)

where d is taken as m 1 1/2, and the coefficient a0 can be evaluated by the
normalization condition.

2. When p 5 1, the energy eigenvalue can be written as

E1 5 2!b(2 1 m) (33)

Moreover, we can obtain the restriction on the parameters of the potential
and the angular momentum m from the determinant relation (13) as B0 B1 5
A0C1, i.e.,
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Hc 1
(1 1 2m)a

2!b
JHc 1

(3 1 2m)a

2!b
J 5 2!b(1 1 2m) (34)

In this case, the corresponding eigenfunction can be written as

R(1)
m 5 (a0 1 a1r)r d expF2

ar 1 br 2

2!b
G (35)

where a0 and a1 can be obtained by the recursion relation (26) and the
normalization relation.

Similarly, if ap Þ 0, but ap11 5 ap12 5 ??? 5 0, we get Ap 5 0. In this
case, the eigenfunction can be written as

R(p)
m 5 (a0 1 a1r 1 ??? 1 apr p)r d expF2

ar 1 br 2

2!b
G (36)

where d is taken as m 1 1/2, and the coefficients ai (i 5 1, 2, . . . , p) can
be calculated by Eq. (26) and the normalization condition.

4. THE SINGULAR EVEN-POWER POTENTIAL

Similar to the above discussion, for the central singular even-power
potential we can take the ansatz

Rm(r) 5 exp[pm(r)] o
n50

anr 2n1d (37)

where pm is taken as

pm(r) 5
1
2

ar 2 1
1
2

br 22 (38)

We can solve the two-dimensional Schrödinger equation with the potential

V(r) 5 ar 2 1
b
r 2 1

c
r 4 1

d
r 4 (39)

We can get the following sets of equations after substituting the ansatz (37)
into Eq. (4) and equating the coefficients of rd1n to zero:

Anan 1 Bn11an11 1 Cn12an12 5 0 (40)

where

An 5 E 1 a(1 1 2d 1 4n) (41a)

Bn 5 2b 2 2ab 2 (m2 2 1/4) 1 (d 1 2n)(21 1 d 1 2n) (41b)
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Cn 5 (3 2 2d 2 4n) 2 c (41c)

and

a2 5 a, b2 5 d (42)

Similar to the above choices, we can choose a and b as 2!a and 2!d,
respectively. Moreover, if a0 Þ 0, then one can obtain C0 5 0, i.e.,

d 5 (3/2 1 m) (43)

where m [ c/(2!d). However, if ap Þ 0, but ap11 5 ap12 5 ??? 5 0, then
Ap 5 0, from which one can obtain the energy eigenvalue as

Ep 5 !a(4 1 4p 1 2m) (44)

We now discuss the corresponding exact solutions for p 5 0 and p 5 1.
1. When p 5 0, we arrive at

E0 5 !a(4 1 2m) (45)

In this case, B0 5 0 from the determinant relation (13), which leads to the
constraint condition between the parameters of the potential and the angular
momentum quantum number m,

(1 1 m)2 2 b 2 2!ad 2 m2 5 0 (46)

The corresponding eigenfunction/can be written as

R(0)
m 5 a0r d expF2

!ar 2 1 !dr 22

2 G (47)

where d is given by Eq. (43) and the coefficient a0 can be obtained by the
normalization condition.

2. When p 5 1, the energy eigenvalue can be obtained from Eq. (44)
as follows:

E1 5 !a(8 1 2m) (48)

In this case, the determinant relation (13) gives B0B1 5 A0C1, which results
in the following restriction on the parameters and angular momentum quan-
tum m:

[2b 2 2!ad 1 (1 1 m)2 2 m2]

3 [2b 2 2!ad 1 (3 1 m)2 2 m2] 2 16!ad 5 0 (49)

The eigenfunction for p 5 1 is
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R(1)
m 5 (a0 1 a1r 2)r d expF2

!ar 2 1 !dr 22

2 G (50)

where d is given by Eq. (43), and ai (i 5 0, 1) can be calculated from Eq.
(40) and the normalization relation. Following this method, we can obtain a
class of exact solutions by setting the different p. Generally, the corresponding
eigenfunction for p can be written as

R(p)
m 5 (a0 1 a1r 2 1 ??? 1 apr 2p)r d expF2

!ar 2 1 !dr 22

2 G (51)

where ai (i 5 0, 1, . . . , p) can be evaluated from recursion relation (40) and
the normalization condition.

5. CONCLUDING REMARKS

In this paper, applying an ansatz to the eigenfunction, we have obtained
the exact solutions of the two-dimensional Schrödinger equation with the
sextic potential V(r) 5 ar 2 1 br 4 1 cr 6, the mixed potential V(r) 5 ar 1
br 2 1 cr21 as well as the singular even-power potential V(r) 5 ar 2 1 br22

1 cr24 1 dr26. The corresponding restrictions on the parameters of the
potential and the angular momentum m have been obtained for the different
potentials. The study of other classes of central potentials by this method is
in progress.
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